Johannes Traxler, MSc., 2021

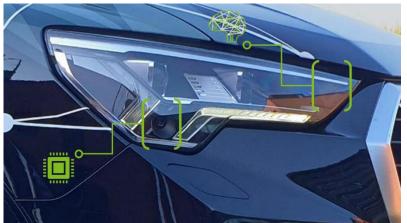
System on Module Deep-Learning-Inference board for Object Detection Made in Germany

0

Safe AI platform for High Performance / Deep-Learning inference on the Edge

YES GmbH | Im Wirtschaftspark 4 | A-3494 Gedersdorf | office@eyyes.com | www.eyyes.com

89777777


EYYES - We make machines see

Technology leader for Safe Artificial Intelligence

EYYES stands for:

- ... make our world safer with artificial intelligent
- ... experts in computer vision, machine learning and embedded systems
- ... camera and sensing technology
- ... soft- and hardware development made in Europe
- ... technological, tailor-made solutions at the highest level through lead, competence and innovation
- ... strong relationship to leading Europe machine learning research organizations

Sites

KREMS AN DER DONAU / Austria

Headquarter

- General Management
- Sales & Marketing
- Project Management & Execution
- Assembling / Test Field
- Procurement
- Research & Development

AACHEN / Germany

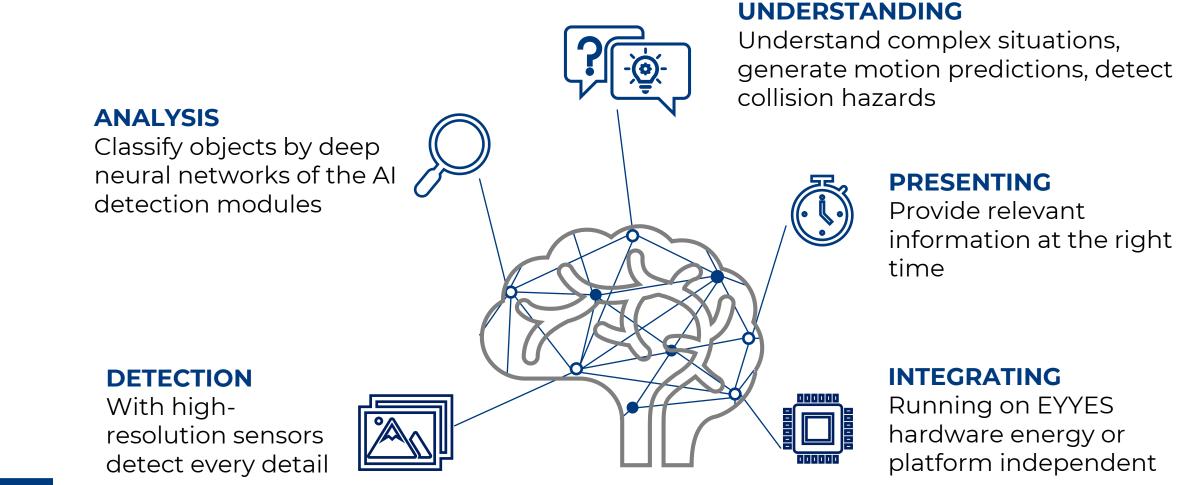
Competence Center Software Engineering

- Development Software
- Development Algorithmic
- Development Artificial Intelligence & Machine Learning (Deep Learning)
- Research & Development

FREITAL (DRESDEN) / Germany

Competence Center Embedded Systems

- Development Embedded Systems
- Service & Repair
- Electronics Laboratory & Certifications
- Safety Engineering
- Research & Development



3

Smart solutions for safe mobility

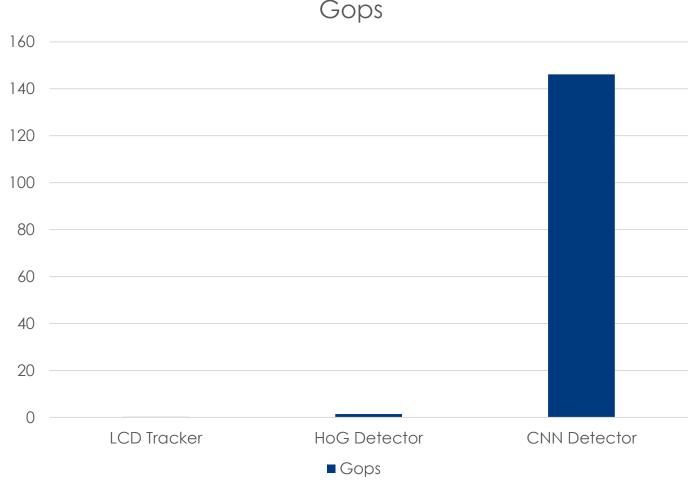
with Deep learning

EYYES Deep Learning Technology

0

Evolution and development

EYYES GmbH | Im Wirtschaftspark 4 | A-3494 Gedersdorf | office@eyyes.com | www.eyyes.com


11111111111111111

C.G

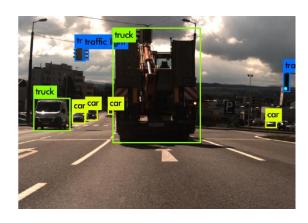
Initial Situation in 2016

Deep Learning needed for several project opportunities

- 2 powers of ten more calculation requirement
- On the edge of the physical limitation
- GPU require very high electrical power consumption and produce lots of waste heat
- No real alternative avaiable

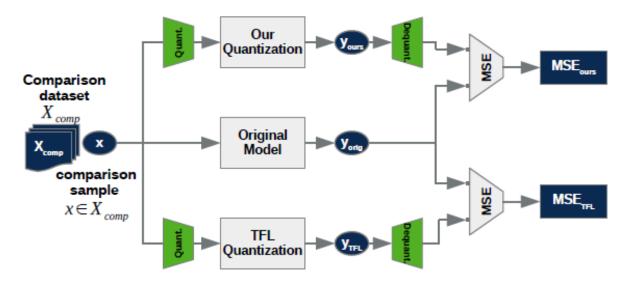
Soft- and Hardware R&D Projects realized

Projects realizes with public and private funding:


- AIRVS "Artificial Intelligence Rear View System" together with SCCH Hagenberg
 - YOLO based network tests
 - Research on LSTM based tracking algorithms
 - Development of CNN software optimization algorithms
- **RailEye 3.0** in cooperation with TU-Dresden
 - Development of a SoM for 2 sensor realtime applikations
 - FPGA implementation of H.264 core and first deep-learning processing

Soft- and Hardware R&D Projects realized

How to solve the challenge of maximizing the performance of a CNN chip?

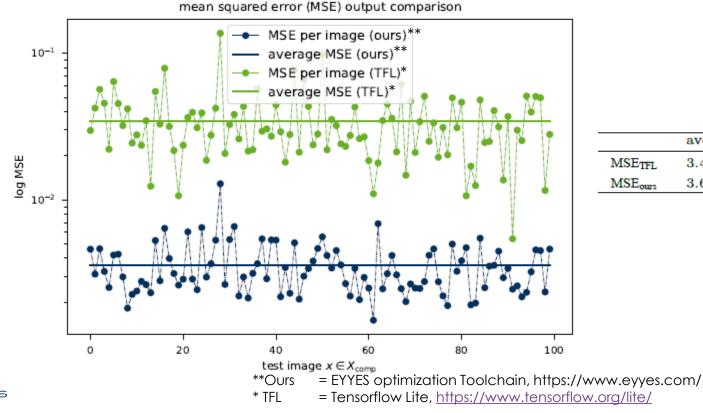

- Use quantisation to reduce the required memory bandwidth
- Decrease the required operations by second
- Improve the training algorithm
- Use explainability algorithm to monitor the functionality of the neural network
- Improve the parallel processing

Soft- and Hardware R&D Projects realized

Challenge 1: Use quantisation to reduce the required memory bandwidth

- EYYES developed a new approach to quantize the CNN parameter (patent pending)
- Methode to determine the meansquare error (MSE)

TFL Ours = Tensorflow Lite, <u>https://www.tensorflow.org/lite/</u>


= EYYES pptimization Toolchain, https://www.eyyes.com/technology/deep-learning-optimizer/

Soft- and Hardware R&D Projects realized

Challenge 1: Use quantisation to reduce the required memory bandwidth

Results comared with Tensorflow lite (TFL^{*})

	average	minimum	maximum	σ
MSETFL	$3.4 \cdot 10^{-2}$	$5.4 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	$1.9\cdot 10^{-2}$
MSEours	$3.6 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$1.3 \cdot 10^{-2}$	$1.5 \cdot 10^{-3}$

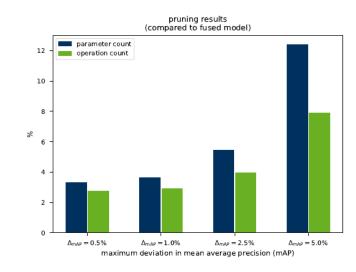
we

see

Soft- and Hardware R&D Projects realized

Challenge 2: Decrease the required operations by second

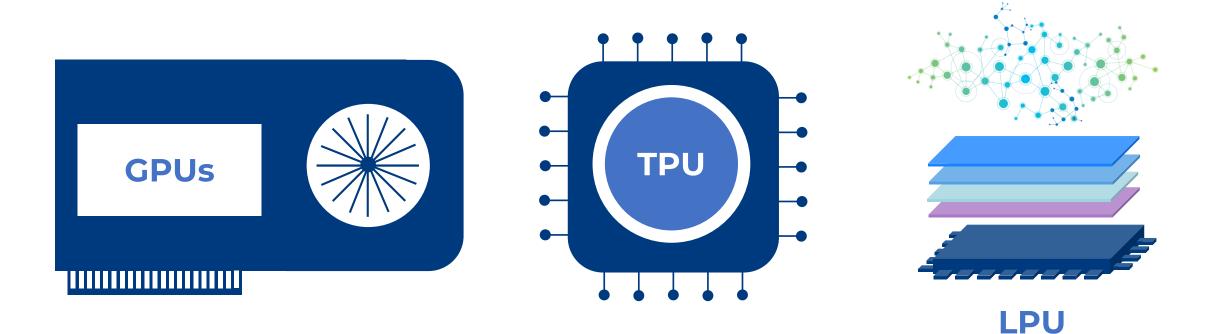
- Reduce the required operations using
 - Pruning
 - Cutting
 - Specific additional reductions


mAP deviation:	Parameter reduction:	Operation reduction:		
Δ_{mAP}	$R_{N_{ m param}}$	$R_{N_{ops}}$		
0.5%	3.3%	2.7%		
1.0%	3.6%	2.9%		
2.5%	5.4%	4.0%		
5.0%	12.4%	7.9%		

Soft- and Hardware R&D Projects realized

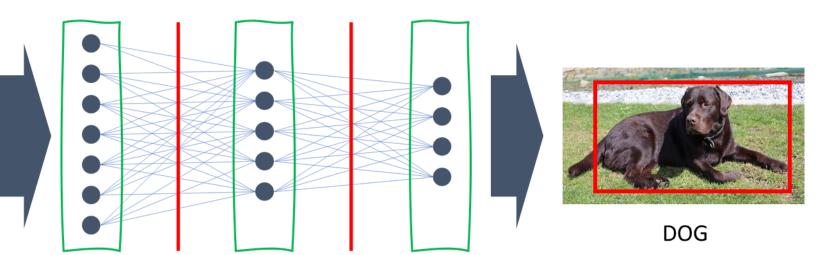
Challenge 3: Improve the training algorithm

- EYYES developed unique training mechanism
 - Autoannotation
 - Quality measurement (MaP, IoU, ...)
 - Simulation of the network
 - Perturbation methods to challenge the DNN
 - Extend the variety of objects and noise using "Prototypes" and GANs
 - Explainability due to stepwise analysis methods



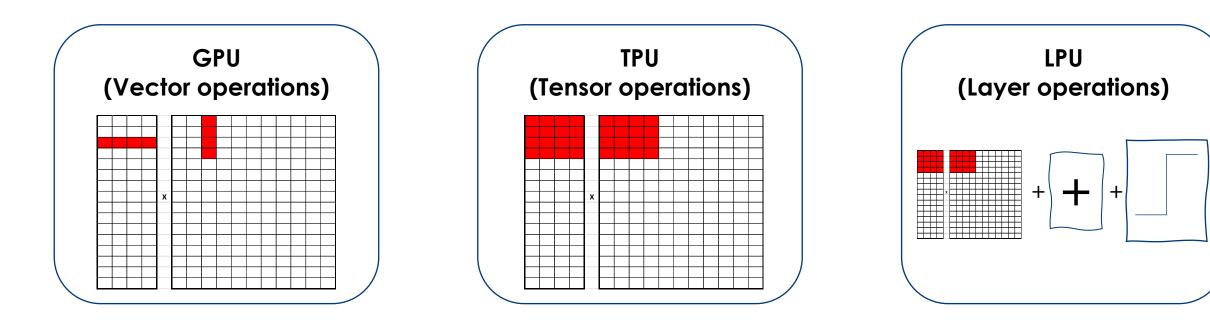
Soft- and Hardware R&D Projects realized

Challenge 4: Improve the parallel processing



Soft- and Hardware R&D Projects realized

Challenge 4: Improve the parallel processing



Single storage operation

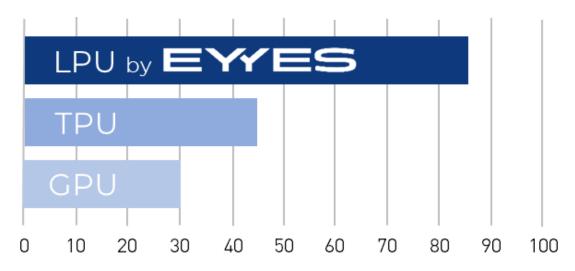
Soft- and Hardware R&D Projects realized

Challenge 4: Improve the parallel processing

Soft- and Hardware R&D Projects realized

Challenge 4: Improve the parallel processing

Show disabled ports	Component Name ad	da_wrapper_0		
+ SAXIS + SAXIS_BAS + SAXIS_WEIGHTS	Bit Depth	16		
+ S,AXI M,AXIS,ACIX • M,AXIS,ARESETN	C S Axi Addr Width	6	\otimes	
s_ADIS_ACLK s_ADIS_ARESETN s_ADIS_WEIGHTS_ACLK	C S Axi Data Width	32		
G S,AUS, WEIGHTS, ARESETN S,AUIS, BIAS, ACLK G S,AUIS, BIAS, ARESETN	Leakyness Shift	4		
active_convolutions(7.0) in g_width(8.0) in g_height(8.0)	Max Img Height	320		
S_ANIJACUX Haady S_ANIJARESETN done	Max Img Width	320	\otimes	
og_acus ulate output_erable satist	Num Channels	8	\otimes	
fitersize(40) en_activation	Num Filters	8	\otimes	
reitu, sr., kentyreitu kaa kynessi(30) reitu, carp, top(150)	Scale Factor	8	\otimes	
relu.csp.lot(150) op.up.lsen pling op.pooling	Sim	"0"	0	
pooling_custon_padding pooling_stride[1:0] ck_100				


OK

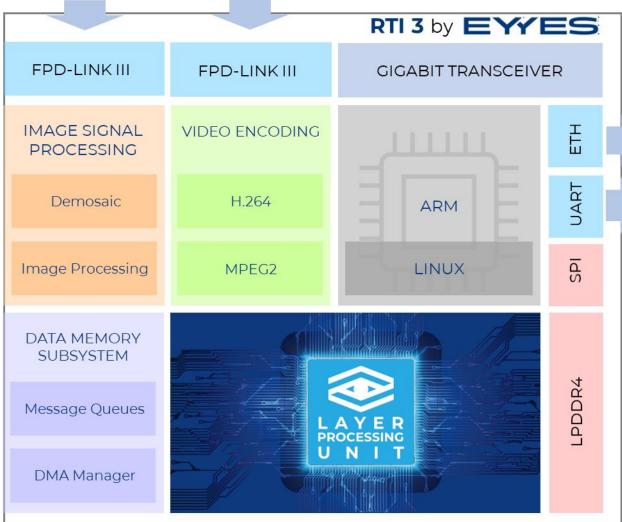
Soft- and Hardware R&D Projects realized

Challenge 4: Improve the parallel processing

- Maximum parallelism
- Gerneralized processing unit
 - o Kernel W 1-16, H 1-16
 - o Strides W 1-2, H 1-2
 - o Padding 0
 - Maxpooling
 - Fully connected
 - Input Size arbitrary
 - Convolution and depthwise convolution
 - o Up to 32 Cores
 - > 10.000 operations per clock

LPU Terra Operations per Second compared between the LPU, TPU and GPU using similar frequencies

REALTIME INTERFACE 3

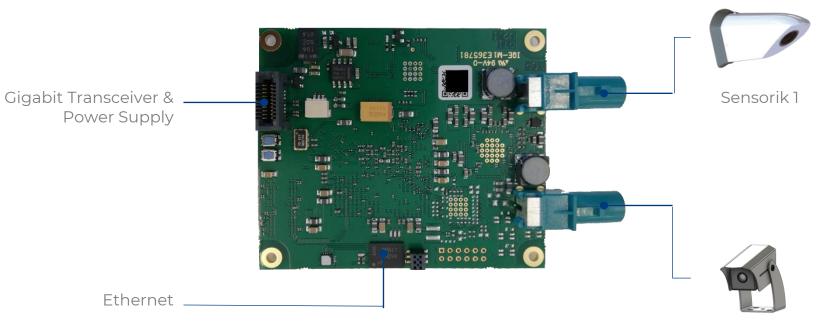

0

0

0

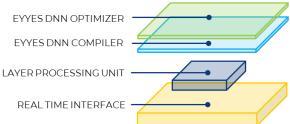
571 CG High Performance SoM for Deep Learning on the edge

High Performance SoM for Deep Learning on the edge



High Performance SoM for Deep Learning on the edge

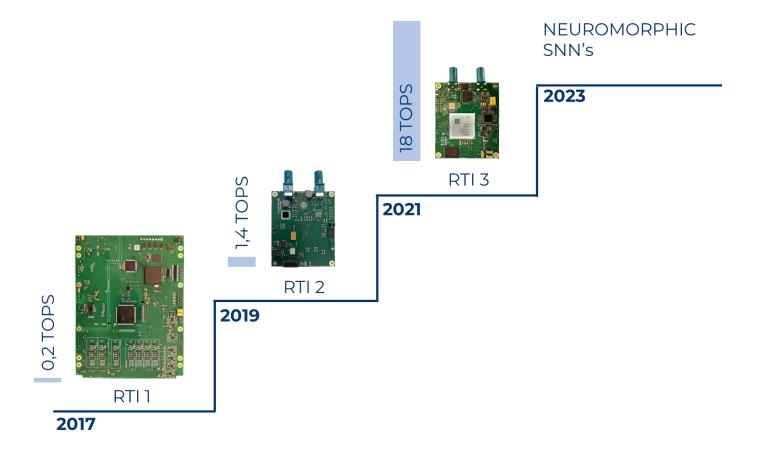
Sensorik 2


High Performance SoM for Deep Learning on the edge

The perfect Deep-Learning platform:

- Plug&Play device together with the EYYES camera sensors
- Power Supply via Power over Ethernet or direct power supply (low power)
- Process and control up to two independent Camera sensors via FDP LINK III
- Process up to two different digital H.264 videostreams
- Receive the object list directly with open standard protocol (ROS, ADTF, ...)
- Easy to configure using Webinterface (easy to use)
- Process in realtime the sensor data with deep-learning with 20 TOPs
 - Preinstalled EYYESNET with 7/21 object classes
 - Specialization and replacement of the DNN via Update

6_____



AI NET MOD

EYYES Technology Evolution

FPGA Driven Development and Outlook

Evolution from an RTI1 to RTI3 and Outlook

High Performance SoM for Deep Learning on the edge

Examplevideo from Testdrive in Vienna